Amazon cover image
Image from Amazon.com

Axioms for lattices and Boolean algebras Padmanabhan, R.

By: Publication details: New Jersey World Scientific 2008 Description: xi, 216 pISBN:
  • 9789812834546
Subject(s): DDC classification:
  • 511.33
Summary: The importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of 'join and meet' or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems. A new topic in this book is the characterization of Boolean algebras within the class of all uniquely complemented lattices. Here, the celebrated problem of E V Huntington is addressed, which - according to G Gratzer, a leading expert in modern lattice theory - is one of the two problems that shaped a century of research in lattice theory. Among other things, it is shown that there are infinitely many non-modular lattice identities that force a uniquely complemented lattice to be Boolean, thus providing several new axiom systems for Boolean algebras within the class of all uniquely complemented lattices. Finally, a few related lines of research are sketched, in the form of appendices, including one by Dr Willian McCune of the University of New Mexico, on applications of modern theorem - proving to the equational theory of lattices. (Source: www.alibris.com)
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The importance of equational axioms emerged initially with the axiomatic approach to Boolean algebras, groups, and rings, and later in lattices. This unique research monograph systematically presents minimal equational axiom-systems for various lattice-related algebras, regardless of whether they are given in terms of 'join and meet' or other types of operations such as ternary operations. Each of the axiom-systems is coded in a handy way so that it is easy to follow the natural connection among the various axioms and to understand how to combine them to form new axiom systems. A new topic in this book is the characterization of Boolean algebras within the class of all uniquely complemented lattices. Here, the celebrated problem of E V Huntington is addressed, which - according to G Gratzer, a leading expert in modern lattice theory - is one of the two problems that shaped a century of research in lattice theory. Among other things, it is shown that there are infinitely many non-modular lattice identities that force a uniquely complemented lattice to be Boolean, thus providing several new axiom systems for Boolean algebras within the class of all uniquely complemented lattices. Finally, a few related lines of research are sketched, in the form of appendices, including one by Dr Willian McCune of the University of New Mexico, on applications of modern theorem - proving to the equational theory of lattices. (Source: www.alibris.com)

There are no comments on this title.

to post a comment.

Powered by Koha