Classical and multilinear harmonic analysis - 2 Vols. Muscalu, Camil

By: Contributor(s): Series: Cambridge studies in advanced mathematics; 137-138Publication details: 2013 Cambridge University Press CambridgeDescription: xvii, 367 p. Vol. 1; xv, 323 p. Vol. 2ISBN:
  • 9780521882453 (Vol.1)
  • 9781107031821 (Vol.2)
Subject(s): DDC classification:
  • 515.2422 M8C5
Summary: his two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form. • Provides a solid foundation for beginning graduate students • Covers more material than the average introductory text • Suitable for students and teachers alike
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
Book Book Ahmedabad 515.2422 M8C5-I (Browse shelf(Opens below)) Available 179424
Book Book Ahmedabad 515.2422 M8C5-II (Browse shelf(Opens below)) Available 179434
Total holds: 0

his two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

• Provides a solid foundation for beginning graduate students • Covers more material than the average introductory text • Suitable for students and teachers alike

There are no comments on this title.

to post a comment.

Powered by Koha